Консервативные силыСила называется консервативной (или потенциальной), если работа этой силы не зависит от формы траектории и определяется только начальным и конечным положением тела. Пусть, например, тело под действием консервативной силы �⃗F переместилось из начальной точки 1 в конечную точку 2 (рис. 1). Тогда работа A силы �⃗F зависит только от положения самих точек 1 и 2, но не от траектории движения тела. Например, для траекторий 1 → a → 2 и 1 → b → 2 величина A будет одинаковой. Рисунок 1. Консервативная сила Отметим, что работа консервативной силы по любому замкнутому пути равна нулю. Действительно, давайте выйдем из точки 1 по траектории 1 → a → 2 и вернёмся назад по траектории 2 → b → 1. На первой траектории сила совершит работу A, а на второй траектории работа будет равна −A. В итоге суммарная работа окажется нулевой. Так вот, понятие потенциальной энергии можно ввести только в случае консервативной силы. Потенциальная энергия W — это математическое выражение, зависящее от координат тела, такое, что работа силы равна изменению этого выражения со знаком минус �=−Δ�A=−ΔW Как видим, работа консервативной силы есть разность значений потенциальной энергии, вычисленных соответственно для начального и конечного положений тела. Потенциальность электростатического поляОказывается, что сила, с которой электростатическое поле действует на заряженное тело, также является консервативной. Работа этой силы, совершаемая при перемещении заряда, называется работой электростатического поля. Имеем, таким образом, важнейший факт:
Этот факт называется также потенциальностью электростатического поля. Как и поле силы тяжести, электростатическое поле является потенциальным. Работа электростатического поля одинакова для всех путей, по которым заряд может двигаться из одной фиксированной точки пространства в другую. Строгое математическое доказательство потенциальности электростатического поля выходит за рамки школьной программы. Однако «на физическом уровне строгости» мы можем убедиться в справедливости этого факта с помощью следующего простого рассуждения. Нетрудно видеть, что если бы электростатическое поле не было потенциальным, то можно было бы построить вечный двигатель! В самом деле, тогда существовала бы замкнутая траектория, при перемещении заряда по которой поле совершало бы положительную работу (и при этом никаких изменений в окружающих телах не происходило бы). Крутим себе заряд по этой траектории, черпаем неограниченное количество энергии ниоткуда — и все энергетические проблемы человечества решены. Но такого, увы, не наблюдается — это вопиющим образом противоречит закону сохранения энергии. Так как электростатическое поле потенциально, мы можем говорить о потенциальной энергии заряда в этом поле. | |
Просмотров: 144 | |