Ядерные реакцииВ предыдущем листке мы неоднократно говорили о расщеплении атомного ядра на составные части. Но как этого добиться в действительности? В результате каких физических процессов можно разбить ядро? Наблюдения радиоактивного распада в изменяющихся внешних условиях — а именно, при различных давлениях и температурах, в электрических и магнитных полях — показали, что скорость радиоактивного распада от этих условий не зависит. Никаких превращений химических элементов друг в друга все эти факторы вызвать не способны. Очевидно, изменения энергии тут слишком малы, чтобы повлиять на атомное ядро — так ветер, обдувающий кирпичный дом, не в состоянии его разрушить. Но разрушить дом можно артиллерийским снарядом. И Резерфорд в 1919 году решил воспользоваться наиболее мощными «снарядами», которые имелись тогда в распоряжении. Это были α-частицы, вылетающие с энергией около 5 МэВ при радиоактивном распаде урана. (Как вы помните, это те самые снаряды, которыми он восемь лет назад бомбардировал лист золотой фольги в своих знаменитых опытах, породивших планетарную модель атома.) Правда, превращений золота в другие химические элементы в тех экспериментах не наблюдалось. Ядро золота 79197��79197Au само по себе весьма прочное, да и к тому же содержит довольно много протонов; они создают сильное кулоновское поле, отталкивающее α-частицу и не подпускающее её слишком близко к ядру. А ведь для разбивания ядра α-снаряд должен сблизиться с ядром настолько, чтобы включились ядерные силы! Что ж, раз большое количество протонов мешает — может, взять ядро полегче, где протонов мало? Резерфорд подверг бомбардировке ядра азота 714�714N и в результате осуществил первую в истории физики ядерную реакцию: 714�+24��→817�+11�(1)714N+24He→817O+11H(1) В правой части (1) мы видим продукты реакции — изотоп кислорода и протон. Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц. Ускорители имеют два серьёзных преимущества перед естественными «радиоактивными пушками».
Так, с помощью протонов, прошедших через ускоритель, в 1932 году удалось разбить ядро лития (получив при этом две α-частицы): 37��+11�→24��+24��37Li+11H→24He+24He Ядерные реакции дали возможность искусственного превращения химических элементов. Кроме того, в продуктах реакций стали обнаруживаться новые, не известные ранее частицы. Например, при облучении бериллия α-частицами в том же 1932 году был открыт нейтрон: 49��+24��→612�+01�49Be+24He→612O+01n Нейтроны замечательно подходят для раскалывания ядер: не имея электрического заряда, они беспрепятственно проникают внутрь ядра. Так, при облучении азота нейтронами протекает следующая реакция: 714�+01�→511�+24��714N+01n→511B+24He В ходе экспериментов с ядерными реакциями была открыта искусственная радиоактивность — получены радиоактивные изотопы, не встречающиеся в естественных условиях. Например, в реакции 1327��+24��→1530�+01�1327Al+24He→1530P+01n получился радиоактивный изотоп фосфора 1530�1530P, которого нет в природе. Этот радиоактивный фосфор распадается, испуская позитрон и превращаясь в кремний: 1530�→1430��+10�1530P→1430Si+10e | |
Просмотров: 148 | |