Знакомьтесь, находите любовь, друзей и компанию на вечер в нашем телеграм боте! 😍


Ядерные реакции

Ядерные реакции

В предыдущем листке мы неоднократно говорили о расщеплении атомного ядра на составные части. Но как этого добиться в действительности? В результате каких физических процессов можно разбить ядро?

Наблюдения радиоактивного распада в изменяющихся внешних условиях — а именно, при различных давлениях и температурах, в электрических и магнитных полях — показали, что скорость радиоактивного распада от этих условий не зависит. Никаких превращений химических элементов друг в друга все эти факторы вызвать не способны. Очевидно, изменения энергии тут слишком малы, чтобы повлиять на атомное ядро — так ветер, обдувающий кирпичный дом, не в состоянии его разрушить.

Но разрушить дом можно артиллерийским снарядом. И Резерфорд в 1919 году решил воспользоваться наиболее мощными «снарядами», которые имелись тогда в распоряжении. Это были α-частицы, вылетающие с энергией около 5 МэВ при радиоактивном распаде урана. (Как вы помните, это те самые снаряды, которыми он восемь лет назад бомбардировал лист золотой фольги в своих знаменитых опытах, породивших планетарную модель атома.)

Правда, превращений золота в другие химические элементы в тех экспериментах не наблюдалось. Ядро золота 79197��79197​Au само по себе весьма прочное, да и к тому же содержит довольно много протонов; они создают сильное кулоновское поле, отталкивающее α-частицу и не подпускающее её слишком близко к ядру. А ведь для разбивания ядра α-снаряд должен сблизиться с ядром настолько, чтобы включились ядерные силы! Что ж, раз большое количество протонов мешает — может, взять ядро полегче, где протонов мало?

Резерфорд подверг бомбардировке ядра азота 714�714​N и в результате осуществил первую в истории физики ядерную реакцию:

714�+24��→817�+11�(1)714​N+24​He→817​O+11​H(1)

В правой части (1) мы видим продукты реакции — изотоп кислорода и протон.

Стало ясно, что для изучения ядерных реакций нужно располагать частицами-снарядами высоких энергий. Такую возможность дают ускорители элементарных частиц. Ускорители имеют два серьёзных преимущества перед естественными «радиоактивными пушками».

  1. В ускорителях можно разгонять любые заряженные частицы. В особенности это касается протонов, которые при естественном распаде ядер не появляются. Протоны хороши тем, что несут минимальный заряд, а значит — испытывают наименьшее кулоновское отталкивание со стороны ядер-мишеней.

  2. Ускорители позволяют достичь энергий, на несколько порядков превышающие энергию αчастиц при радиоактивном распаде. Например, в Большом адронном коллайдере протоны разгоняются до энергий в несколько ТэВ; это в миллион раз больше, чем 5 МэВ у α-частиц в реакции (1), осуществлённой Резерфордом.

Так, с помощью протонов, прошедших через ускоритель, в 1932 году удалось разбить ядро лития (получив при этом две α-частицы):

37��+11�→24��+24��37​Li+11​H→24​He+24​He

Ядерные реакции дали возможность искусственного превращения химических элементов. Кроме того, в продуктах реакций стали обнаруживаться новые, не известные ранее частицы. Например, при облучении бериллия α-частицами в том же 1932 году был открыт нейтрон:

49��+24��→612�+01�49​Be+24​He→612​O+01​n

Нейтроны замечательно подходят для раскалывания ядер: не имея электрического заряда, они беспрепятственно проникают внутрь ядра. Так, при облучении азота нейтронами протекает следующая реакция:

714�+01�→511�+24��714​N+01​n→511​B+24​He

В ходе экспериментов с ядерными реакциями была открыта искусственная радиоактивность — получены радиоактивные изотопы, не встречающиеся в естественных условиях. Например, в реакции

1327��+24��→1530�+01�1327​Al+24​He→1530​P+01​n

получился радиоактивный изотоп фосфора 1530�1530​P, которого нет в природе. Этот радиоактивный фосфор распадается, испуская позитрон и превращаясь в кремний:

1530�→1430��+10�1530​P→1430​Si+10​e

Категория: Ядерная физика | Добавил: pilot (11.05.2023)
Просмотров: 148 | Рейтинг: 0.0/0
Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0