Перейдём к рассмотрению кристаллизации — процесса, обратного плавлению. Начинаем с точки D предыдущего рисунка. Предположим, что в точке D нагревание расплава прекратилось (печку выключили и расплав выставили на воздух). Дальнейшее изменение температуры расплава представлено на рис. 1. Рисунок 1. График кристаллизации Жидкость остывает (участок DE), пока её температура не достигнет температуры кристаллизации, которая совпадает с температурой плавления tпл. С этого момента температура расплава меняться перестаёт, хотя тепло по-прежнему уходит от него в окружающую среду. На участке EF происходит кристаллизация расплава — его постепенный переход в твёрдое состояние. Внутри участка EF мы снова имеем смесь твёрдой и жидкой фаз, и чем ближе к точке F, тем больше становится твёрдого вещества и тем меньше — жидкости. Наконец, в точке F жидкости не остаётся вовсе — она полностью кристаллизовалась. Следующий участок FG соответствует дальнейшему остыванию твёрдого тела, возникшего в результате кристаллизации. Нас опять-таки интересует участок фазового перехода EF: почему температура остаётся неизменной, несмотря на уход тепла? Снова вернёмся в точку D. После прекращения подачи тепла температура расплава понижается, так как его частицы постепенно теряют кинетическую энергию в результате соударений с молекулами окружающей среды и излучения электромагнитных волн. Когда температура расплава понизится до температуры кристаллизации (точка E), его частицы замедлятся настолько, что силы притяжения окажутся в состоянии «развернуть» их должным образом и придать им строго определённую взаимную ориентацию в пространстве. Так возникнут условия для зарождения кристаллической решётки, и она действительно начнёт формироваться благодаря дальнейшему уходу энергии из расплава в окружающее пространство. Одновременно начнётся встречный процесс выделения энергии: когда частицы занимают свои места в узлах кристаллической решётки, их потенциальная энергия резко уменьшается, за счёт чего увеличивается их кинетическая энергия — кристаллизующаяся жидкость является источником тепла. Выделяющееся в ходе кристаллизации тепло в точности компенсирует потерю тепла в окружающую среду, и потому температура на участке EF не меняется. В точке F расплав исчезает, а вместе с завершением кристаллизации исчезает и этот внутренний «генератор» тепла. Вследствие продолжающегося рассеяния энергии во внешнюю среду. Понижение температуры возобновится, но только остывать уже будет образовавшееся твёрдое тело (участок F G). Как показывает опыт, при кристаллизации на участке EF выделяется ровно то же самое количество теплоты Q = λm, которое было поглощено при плавлении на участке BC. | |
Просмотров: 193 | |